Copied to
clipboard

G = C23xD9order 144 = 24·32

Direct product of C23 and D9

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C23xD9, C9:C24, C18:C23, C3.(S3xC23), (C2xC6).35D6, (C2xC18):4C22, (C22xC18):3C2, C6.29(C22xS3), (C22xC6).10S3, SmallGroup(144,112)

Series: Derived Chief Lower central Upper central

C1C9 — C23xD9
C1C3C9D9D18C22xD9 — C23xD9
C9 — C23xD9
C1C23

Generators and relations for C23xD9
 G = < a,b,c,d,e | a2=b2=c2=d9=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 711 in 201 conjugacy classes, 99 normal (7 characteristic)
C1, C2, C2, C3, C22, C22, S3, C6, C23, C23, C9, D6, C2xC6, C24, D9, C18, C22xS3, C22xC6, D18, C2xC18, S3xC23, C22xD9, C22xC18, C23xD9
Quotients: C1, C2, C22, S3, C23, D6, C24, D9, C22xS3, D18, S3xC23, C22xD9, C23xD9

Smallest permutation representation of C23xD9
On 72 points
Generators in S72
(1 68)(2 69)(3 70)(4 71)(5 72)(6 64)(7 65)(8 66)(9 67)(10 55)(11 56)(12 57)(13 58)(14 59)(15 60)(16 61)(17 62)(18 63)(19 46)(20 47)(21 48)(22 49)(23 50)(24 51)(25 52)(26 53)(27 54)(28 37)(29 38)(30 39)(31 40)(32 41)(33 42)(34 43)(35 44)(36 45)
(1 32)(2 33)(3 34)(4 35)(5 36)(6 28)(7 29)(8 30)(9 31)(10 19)(11 20)(12 21)(13 22)(14 23)(15 24)(16 25)(17 26)(18 27)(37 64)(38 65)(39 66)(40 67)(41 68)(42 69)(43 70)(44 71)(45 72)(46 55)(47 56)(48 57)(49 58)(50 59)(51 60)(52 61)(53 62)(54 63)
(1 14)(2 15)(3 16)(4 17)(5 18)(6 10)(7 11)(8 12)(9 13)(19 28)(20 29)(21 30)(22 31)(23 32)(24 33)(25 34)(26 35)(27 36)(37 46)(38 47)(39 48)(40 49)(41 50)(42 51)(43 52)(44 53)(45 54)(55 64)(56 65)(57 66)(58 67)(59 68)(60 69)(61 70)(62 71)(63 72)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)
(1 31)(2 30)(3 29)(4 28)(5 36)(6 35)(7 34)(8 33)(9 32)(10 26)(11 25)(12 24)(13 23)(14 22)(15 21)(16 20)(17 19)(18 27)(37 71)(38 70)(39 69)(40 68)(41 67)(42 66)(43 65)(44 64)(45 72)(46 62)(47 61)(48 60)(49 59)(50 58)(51 57)(52 56)(53 55)(54 63)

G:=sub<Sym(72)| (1,68)(2,69)(3,70)(4,71)(5,72)(6,64)(7,65)(8,66)(9,67)(10,55)(11,56)(12,57)(13,58)(14,59)(15,60)(16,61)(17,62)(18,63)(19,46)(20,47)(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54)(28,37)(29,38)(30,39)(31,40)(32,41)(33,42)(34,43)(35,44)(36,45), (1,32)(2,33)(3,34)(4,35)(5,36)(6,28)(7,29)(8,30)(9,31)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,55)(47,56)(48,57)(49,58)(50,59)(51,60)(52,61)(53,62)(54,63), (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(61,70)(62,71)(63,72), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,31)(2,30)(3,29)(4,28)(5,36)(6,35)(7,34)(8,33)(9,32)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19)(18,27)(37,71)(38,70)(39,69)(40,68)(41,67)(42,66)(43,65)(44,64)(45,72)(46,62)(47,61)(48,60)(49,59)(50,58)(51,57)(52,56)(53,55)(54,63)>;

G:=Group( (1,68)(2,69)(3,70)(4,71)(5,72)(6,64)(7,65)(8,66)(9,67)(10,55)(11,56)(12,57)(13,58)(14,59)(15,60)(16,61)(17,62)(18,63)(19,46)(20,47)(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54)(28,37)(29,38)(30,39)(31,40)(32,41)(33,42)(34,43)(35,44)(36,45), (1,32)(2,33)(3,34)(4,35)(5,36)(6,28)(7,29)(8,30)(9,31)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,55)(47,56)(48,57)(49,58)(50,59)(51,60)(52,61)(53,62)(54,63), (1,14)(2,15)(3,16)(4,17)(5,18)(6,10)(7,11)(8,12)(9,13)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(61,70)(62,71)(63,72), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,31)(2,30)(3,29)(4,28)(5,36)(6,35)(7,34)(8,33)(9,32)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19)(18,27)(37,71)(38,70)(39,69)(40,68)(41,67)(42,66)(43,65)(44,64)(45,72)(46,62)(47,61)(48,60)(49,59)(50,58)(51,57)(52,56)(53,55)(54,63) );

G=PermutationGroup([[(1,68),(2,69),(3,70),(4,71),(5,72),(6,64),(7,65),(8,66),(9,67),(10,55),(11,56),(12,57),(13,58),(14,59),(15,60),(16,61),(17,62),(18,63),(19,46),(20,47),(21,48),(22,49),(23,50),(24,51),(25,52),(26,53),(27,54),(28,37),(29,38),(30,39),(31,40),(32,41),(33,42),(34,43),(35,44),(36,45)], [(1,32),(2,33),(3,34),(4,35),(5,36),(6,28),(7,29),(8,30),(9,31),(10,19),(11,20),(12,21),(13,22),(14,23),(15,24),(16,25),(17,26),(18,27),(37,64),(38,65),(39,66),(40,67),(41,68),(42,69),(43,70),(44,71),(45,72),(46,55),(47,56),(48,57),(49,58),(50,59),(51,60),(52,61),(53,62),(54,63)], [(1,14),(2,15),(3,16),(4,17),(5,18),(6,10),(7,11),(8,12),(9,13),(19,28),(20,29),(21,30),(22,31),(23,32),(24,33),(25,34),(26,35),(27,36),(37,46),(38,47),(39,48),(40,49),(41,50),(42,51),(43,52),(44,53),(45,54),(55,64),(56,65),(57,66),(58,67),(59,68),(60,69),(61,70),(62,71),(63,72)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72)], [(1,31),(2,30),(3,29),(4,28),(5,36),(6,35),(7,34),(8,33),(9,32),(10,26),(11,25),(12,24),(13,23),(14,22),(15,21),(16,20),(17,19),(18,27),(37,71),(38,70),(39,69),(40,68),(41,67),(42,66),(43,65),(44,64),(45,72),(46,62),(47,61),(48,60),(49,59),(50,58),(51,57),(52,56),(53,55),(54,63)]])

C23xD9 is a maximal subgroup of   C22:3D36  C23:2D18
C23xD9 is a maximal quotient of   D4:6D18  Q8.15D18  D4:8D18  D4.10D18

48 conjugacy classes

class 1 2A···2G2H···2O 3 6A···6G9A9B9C18A···18U
order12···22···236···699918···18
size11···19···922···22222···2

48 irreducible representations

dim1112222
type+++++++
imageC1C2C2S3D6D9D18
kernelC23xD9C22xD9C22xC18C22xC6C2xC6C23C22
# reps114117321

Matrix representation of C23xD9 in GL4(F19) generated by

18000
01800
00180
00018
,
1000
01800
0010
0001
,
1000
0100
00180
00018
,
1000
0100
001217
00214
,
18000
0100
0027
00517
G:=sub<GL(4,GF(19))| [18,0,0,0,0,18,0,0,0,0,18,0,0,0,0,18],[1,0,0,0,0,18,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,18,0,0,0,0,18],[1,0,0,0,0,1,0,0,0,0,12,2,0,0,17,14],[18,0,0,0,0,1,0,0,0,0,2,5,0,0,7,17] >;

C23xD9 in GAP, Magma, Sage, TeX

C_2^3\times D_9
% in TeX

G:=Group("C2^3xD9");
// GroupNames label

G:=SmallGroup(144,112);
// by ID

G=gap.SmallGroup(144,112);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-3,2404,208,3461]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^9=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<